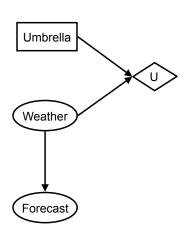
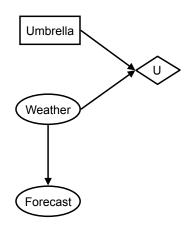
CS 188: Artificial Intelligence


Lecture 19: Decision Diagrams

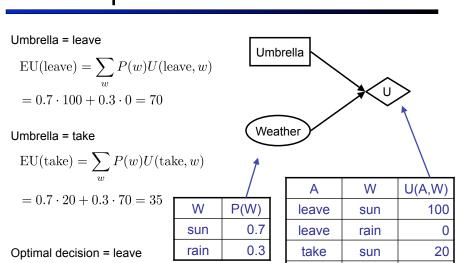
Pieter Abbeel --- UC Berkeley

Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore

Decision Networks

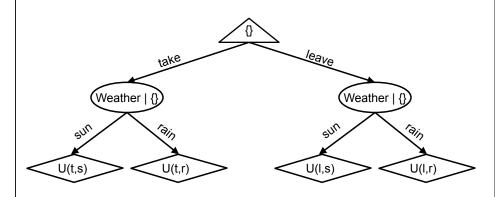

- MEU: choose the action which maximizes the expected utility given the evidence
- Can directly operationalize this with decision networks
 - Bayes nets with nodes for utility and actions
 - Lets us calculate the expected utility for each action
- New node types:
 - Chance nodes (just like BNs)
 - Actions (rectangles, cannot have parents, act as observed evidence)
 - Utility node (diamond, depends on action and chance nodes)

Decision Networks


- Action selection:
 - Instantiate all evidence
 - Set action node(s) each possible way
 - Calculate posterior for all parents of utility node, given the evidence
 - Calculate expected utility for each action
 - Choose maximizing action

 $\mathrm{MEU}(\emptyset) = \max_{a} \mathrm{EU}(a) = 70$

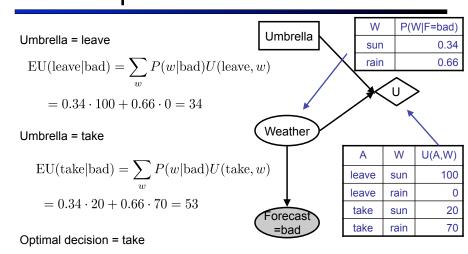
3


Example: Decision Networks

take

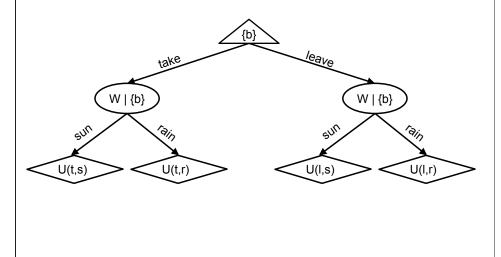
rain

Decisions as Outcome Trees



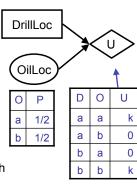
- Almost exactly like expectimax / MDPs
- What's changed?

5


6

Example: Decision Networks

 $\mathrm{MEU}(F = \mathrm{bad}) = \max_{a} \mathrm{EU}(a|\mathrm{bad}) = 53$


Decisions as Outcome Trees

Value of Information

- Idea: compute value of acquiring evidence
 - Can be done directly from decision network
- Example: buying oil drilling rights
 - Two blocks A and B, exactly one has oil, worth k
 - You can drill in one location
 - Prior probabilities 0.5 each, & mutually exclusive
 - Drilling in either A or B has EU = k/2, MEU = k/2
- Question: what's the value of information of O?
 - Value of knowing which of A or B has oil
 - Value is expected gain in MEU from new info
 - Survey may say "oil in a" or "oil in b," prob 0.5 each
 - If we know OilLoc, MEU is k (either way)

 - Gain in MEU from knowing OilLoc?
 - VPI(OilLoc) = k/2
 - Fair price of information: k/2

VPI Example: Weather

MEU with no evidence

$$MEU(\emptyset) = \max_{a} EU(a) = 70$$

MEU if forecast is bad

$$MEU(F = bad) = \max_{a} EU(a|bad) = 53$$

MEU if forecast is good

$$MEU(F = good) = \max_{a} EU(a|good) = 95$$

Forecast distribution

F	P(F)	
good	0.59	
bad	0.41	

$$0.59 \cdot (95) + 0.41 \cdot (53) - 70$$

Umbrella

Weather

Forecast

F P(F)
good 0.59
bad 0.41

$$0.59 \cdot (95) + 0.41 \cdot (53) - 70$$

$$77.8 - 70 = 7.8$$

$$VPI(E|e') = \left(\sum_{e'} P(e'|e) MEU(e, e')\right) - MEU(e)$$

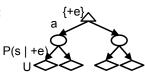
Value of Information

Assume we have evidence E=e. Value if we act now:

$$\mathsf{MEU}(e) = \max_{a} \sum_{s} P(s|e) \ U(s,a)$$

Assume we see that E' = e'. Value if we act then:

$$MEU(e, e') = \max_{a} \sum_{s} P(s|e, e') U(s, a)$$

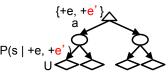

BUT E' is a random variable whose value is unknown, so we don't know what e' will be

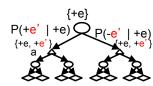
Expected value if E' is revealed and then we act:

$$MEU(e, E') = \sum_{e'} P(e'|e)MEU(e, e')$$

Value of information: how much MEU goes up by revealing E' first then acting, over acting now:

$$VPI(E'|e) = MEU(e, E') - MEU(e)$$




leave

leave

take

100

VPI Properties

Nonnegative

$$\forall E', e : \mathsf{VPI}(E'|e) \geq 0$$

Nonadditive ---consider, e.g., obtaining E_i twice

$$VPI(E_i, E_k|e) \neq VPI(E_i|e) + VPI(E_k|e)$$

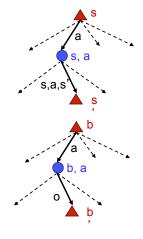
Order-independent

$$VPI(E_j, E_k|e) = VPI(E_j|e) + VPI(E_k|e, E_j)$$
$$= VPI(E_k|e) + VPI(E_j|e, E_k)$$

11

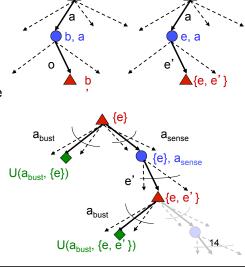
Quick VPI Questions

- The soup of the day is either clam chowder or split pea, but you wouldn't order either one. What's the value of knowing which it is?
- There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What's the value of knowing which?
- You're playing the lottery. The prize will be \$0 or \$100. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?


POMDPs

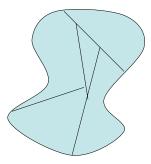
- MDPs have:
 - States S
 - Actions A
 - Transition fn P(s' |s,a) (or T(s,a,s'))
 - Rewards R(s,a,s')

- Observations O
- Observation function P(o|s) (or O(s,o))
- POMDPs are MDPs over belief states b (distributions over S)


13

Example: Ghostbusters

- In (static) Ghostbusters:
 - Belief state determined by evidence to date {e}
 - Tree really over evidence sets
 - Probabilistic reasoning needed to predict new evidence given past evidence


Solving POMDPs

- One way: use truncated expectimax to compute approximate value of actions
 U(a_{bust}, {e})
- What if you only considered busting or one sense followed by a bust?
- You get a VPI-based agent!

More Generally

- General solutions map belief functions to actions
 - Can divide regions of belief space (set of belief functions) into policy regions (gets complex quickly)
 - Can build approximate policies using discretization methods
 - Can factor belief functions in various ways
- Overall, POMDPs are very (actually PSACE-) hard
- Most real problems are POMDPs, but we can rarely solve then in general!

